Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 120(6): 1614-1622, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36829297

RESUMO

The assembly and function of microbial communities depends on many factors including the local environment and the metabolic properties of the colonizing organisms. Chemical communications or other secreted factors also play a role and are used by different microbial strains both cooperatively and competitively. The spectrum of microbial secretions have various effects on the microbe's respective hosts, both positive and negative. Thus, characterizing the roles of microbial community members and their secretions can yield key mechanistic insights into microbiome function and can lead to new intervention strategies. Focusing on the simple, yet important functional impact of toxicity, we quantify supernatant dosage responses with image data and examine the morphological effects of microbial secretions on skin-associated host cells. Since the diversity of microbial communities, coupled with the multiplicity of host tissues requires scalable methods, we develop and demonstrate a microfluidic device that enables high-content screening of microbial secretion effects on adherent cell types.


Assuntos
Bactérias , Microbiota , Bactérias/metabolismo , Microbiota/fisiologia
2.
Integr Biol (Camb) ; 9(9): 782-791, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28831492

RESUMO

Cells infected by viruses can exhibit diverse patterns of viral and cellular gene expression. The patterns arise in part from the stochastic or noisy reaction kinetics associated with the small number of genomes, enzymes, and other molecules that typically initiate virus replication and activate cellular anti-viral defenses. It is not known what features, if any, of the early viral or cellular gene expression correlate with later processes of viral replication or cell survival. Here we used two fluorescent reporters to visualize innate immune activation of human prostate cancer (PC3) cells against infection by vesicular stomatitis virus. The cells were engineered to express green-fluorescent protein under control of the promoter for IFIT2, an interferon-sensitive component of the anti-viral response, while red-fluorescent protein was expressed as a byproduct of virus infection. To isolate and quantitatively analyze single-cells, we used a unique microwell array device and open-source image processing software. Kinetic analysis of viral and cellular reporter profiles from hundreds of cells revealed novel relationships between gene expression and the outcome of infection. Specifically, the relative timing rather than the magnitude of the viral gene expression and innate immune activation correlated with the infection outcome. Earlier viral or anti-viral gene expression favored or hindered virus growth, respectively. Further, analysis of kinetic parameters estimated from these data suggests a trade-off between robust antiviral signaling and cell death, as indicated by a higher rate of detectable cell lysis in infected cells with a detectable immune response. In short, cells that activate an immune response lyse at a higher rate. More broadly, we demonstrate how the intrinsic heterogeneity of individual cell behaviors can be exploited to discover features of viral and host gene expression that correlate with single-cell outcomes, which will ultimately impact whether or not infections spread.


Assuntos
Imunidade Inata , Linhagem Celular Tumoral , Interpretação Estatística de Dados , Perfilação da Expressão Gênica , Genes Reporter , Genes Virais , Proteínas de Fluorescência Verde/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Processamento de Imagem Assistida por Computador , Imunidade Inata/genética , Proteínas Luminescentes/genética , Masculino , Análise de Célula Única , Vesiculovirus/genética , Vesiculovirus/imunologia , Vesiculovirus/patogenicidade , Proteína Vermelha Fluorescente
3.
J Vis Exp ; (124)2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28654053

RESUMO

The development of microbial communities depends on a combination of complex deterministic and stochastic factors that can dramatically alter the spatial distribution and activities of community members. We have developed a microwell array platform that can be used to rapidly assemble and track thousands of bacterial communities in parallel. This protocol highlights the utility of the platform and describes its use for optically monitoring the development of simple, two-member communities within an ensemble of arrays within the platform. This demonstration uses two mutants of Pseudomonas aeruginosa, part of a series of mutants developed to study Type VI secretion pathogenicity. Chromosomal inserts of either mCherry or GFP genes facilitate the constitutive expression of fluorescent proteins with distinct emission wavelengths that can be used to monitor community member abundance and location within each microwell. This protocol describes a detailed method for assembling mixtures of bacteria into the wells of the array and using time-lapse fluorescence imaging and quantitative image analysis to measure the relative growth of each member population over time. The seeding and assembly of the microwell platform, the imaging procedures necessary for the quantitative analysis of microbial communities within the array, and the methods that can be used to reveal interactions between microbial species area all discussed.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Técnicas Bacteriológicas/instrumentação , Técnicas Bacteriológicas/métodos , Análise Serial de Proteínas/instrumentação , Análise Serial de Proteínas/métodos , Proteínas Luminescentes/análise , Proteínas Luminescentes/biossíntese , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/metabolismo
5.
PLoS One ; 11(5): e0155080, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27152511

RESUMO

The structure and function of microbial communities is deeply influenced by the physical and chemical architecture of the local microenvironment and the abundance of its community members. The complexity of this natural parameter space has made characterization of the key drivers of community development difficult. In order to facilitate these characterizations, we have developed a microwell platform designed to screen microbial growth and interactions across a wide variety of physical and initial conditions. Assembly of microbial communities into microwells was achieved using a novel biofabrication method that exploits well feature sizes for control of innoculum levels. Wells with incrementally smaller size features created populations with increasingly larger variations in inoculum levels. This allowed for reproducible growth measurement in large (20 µm diameter) wells, and screening for favorable growth conditions in small (5, 10 µm diameter) wells. We demonstrate the utility of this approach for screening and discovery using 5 µm wells to assemble P. aeruginosa colonies across a broad distribution of innoculum levels, and identify those conditions that promote the highest probability of survivial and growth under spatial confinement. Multi-member community assembly was also characterized to demonstrate the broad potential of this platform for studying the role of member abundance on microbial competition, mutualism and community succession.


Assuntos
Pseudomonas aeruginosa/crescimento & desenvolvimento , Processos Estocásticos , Microscopia de Fluorescência , Probabilidade
6.
Small ; 12(6): 810-7, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26690885

RESUMO

Cell-free protein synthesis (CFPS) is a powerful technology that allows for optimization of protein production without maintenance of a living system. Integrated within micro and nanofluidic architectures, CFPS can be optimized for point-of-care use. Here, the development of a microfluidic bioreactor designed to facilitate the production of a single-dose of a therapeutic protein, in a small footprint device at the point-of-care, is described. This new design builds on the use of a long, serpentine channel bioreactor and is enhanced by integrating a nanofabricated membrane to allow exchange of materials between parallel "reactor" and "feeder" channels. This engineered membrane facilitates the exchange of metabolites, energy, and inhibitory species, and can be altered by plasma-enhanced chemical vapor deposition and atomic layer deposition to tune the exchange rate of small molecules. This allows for extended reaction times and improved yields. Further, the reaction product and higher molecular weight components of the transcription/translation machinery in the reactor channel can be retained. It has been shown that the microscale bioreactor design produces higher protein yields than conventional tube-based batch formats, and that product yields can be dramatically improved by facilitating small molecule exchange within the dual-channel bioreactor.


Assuntos
Reatores Biológicos , Microfluídica/instrumentação , Sistemas Automatizados de Assistência Junto ao Leito , Biossíntese de Proteínas , Sistema Livre de Células , Escherichia coli/metabolismo , Membranas Artificiais , Nanoporos/ultraestrutura , Permeabilidade , Porosidade , Silício/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-26543684

RESUMO

New strategies for combining conventional photo- and soft-lithographic techniques with high-resolution patterning and etching strategies are needed in order to produce multiscale fluidic platforms that address the full range of functional scales seen in complex biological and chemical systems. The smallest resolution required for an application often dictates the fabrication method used. Micromachining and micropowder blasting yield higher throughput, but lack the resolution needed to fully address biological and chemical systems at the cellular and molecular scales. In contrast, techniques such as electron beam lithography or nanoimprinting allow nanoscale resolution, but are traditionally considered costly and slow. Other techniques such as photolithography or soft lithography have characteristics between these extremes. Combining these techniques to fabricate multiscale or hybrid fluidics allows fundamental biological and chemical questions to be answered. In this study, a combination of photolithography and electron beam lithography are used to produce two multiscale fluidic devices that incorporate porous membranes into complex fluidic networks in order to control the flow of energy, information, and materials in chemical form. In the first device, materials and energy were used to support chemical reactions. A nanoporous membrane fabricated with e-beam lithography separates two parallel, serpentine channels. Photolithography was used to pattern microfluidic channels around the membrane. The pores were written at 150 nm and reduced in size with silicon dioxide deposition from plasma enhanced chemical vapor deposition and atomic layer deposition. Using this method, the molecular weight cutoff of the membrane can be adapted to the system of interest. In the second approach, photolithography was used to fabricate 200 nm thin pores. The pores confined microbes and allowed energy replenishment from a media perfusion channel. The same device can be used for study of intercellular communication via the secretion and uptake of signal molecules. Pore size was tested with 750 nm fluorescent polystyrene beads and fluorescein dye. The 200 nm polydimethylsiloxane pores were shown to be robust enough to hold 750 nm beads while under pressure, but allow fluorescein to diffuse across the barrier. Further testing showed that extended culture of bacteria within the chambers was possible. These two examples show how lithographically defined porous membranes can be adapted to two unique situations and used to tune the flow of chemical energy, materials, and information within a microfluidic network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...